วันจันทร์ที่ 23 ธันวาคม พ.ศ. 2556

ฟังก์ชันเอกซ์โพเนนเชียล



ฟังก์ชันนั้นมีอยู่หลายรูปแบบ แต่ละแบบก็มีการตั้งชื่อไม่เหมือนกัน ฟังก์ชันเอกซ์โพเนนเชียลก็เป็นอีกรูปแบบหนึ่งของฟังก์ชันซึ่งเราจะไปดูว่าฟังก์ชันเอกซ์โพนเนนเชียลนั้นมีรูปแบบอย่างไร ก็ต้องไปดูนิยามของมันครับ ว่านิยามของฟังก์ชันเอกซ์โพเนนเชียลนั้นเป็นอย่างไร
นิยาม ฟังก์ชันเอ็กซ์โพเนนเชียลคือ ฟังก์ชัน
\dpi{110}f=\{(x,y)\in R \times R \mid y=a^{x} ,a>0,a\neq  1\}

จากบทนิยามของฟังก์ชันเอกซ์โพเนนเชียล ฟังก์ชันนี้มีรูปแบบในรูปของเลขยกกำลัง โดยฐานของมันต้องมากกว่า 0 และฐานต้องไม่เป็น 1  ตัวอย่างของฟังก์ชันเอกซ์โพเนนเชียลเช่น
\dpi{200}y=10^{x}
\dpi{200}y=\left(\frac{1}{5}\right)^{x}
\dpi{200}y=(\sin 30^{\circ})^{x}
\dpi{200}y=(\sqrt{2})^{x}

ไม่มีความคิดเห็น:

แสดงความคิดเห็น